Oracle Recipe #1: How to generate an IDENTITY column using a sequence

Primary keys can be created using either numeric or character data types, with one exception: Oracle does not have the same concept of identity columns as MS SQL Server.

What is an Identity Column?

It is a property that automatically generates a unique sequential value when it is assigned to a numeric data type. Oracle handles this concept using a database object called sequence.

The Sequence database object enables you to generate a unique sequence number. Each user of the sequence can increment it and obtain numbers for their use. Because multiple users can obtain sequence numbers, there is no guarantee that the numbers you get will not have gaps.

A sequence does not have to be related to a single table, and therefore could be used to provide unique numbers to multiple tables. As a general rule, having one sequence per table or at least one for each major table results in easier diagnostics and a better overall experience.
The following examples show how you can add an identity column for two tables: categories and publishers.

Each table will use a IDENTITY column as PRIMARY KEY.
Fig 1. The categories and publishers catalog.

Fig 2. Script to create both tables.

The following code shows an example of how to select the NEXTVAL from a sequence. Upon executing this trigger, the sequence value is incremented by 1.

Fig 3. Script to create database objects: triggers and sequences.

Each time we add a new row, the trigger will automatically create a new unique number for that row.
With this concept, the first row ID would be 1, and the next ID would be last ID number plus one.

Fig 4. Inserting rows without primary key.

Fig 5.Querying the tables.

Download Scripts

Understanding delegates with C#

A delegate is similar to a function pointer in C or C++ except that delegates are type-safe. The term type-safe means that code is specified in a well-defined manner that can be recognized by a compiler. In this case it means that an incorrect use of a delegate is a compile-time error. This is quite different than in C++, where an incorrect use of a function pointer may not cause an error until the program is running.

Delegates allow you to write code that can dynamically change the methods that it calls.

A delegate contains a reference to a method rather than the method name.

By using delegates, you can invoke a method without knowing its name. Calling the delegate will actually execute the method referenced by the delegate.

To use a delegate, you must follow these steps:

  1. First, define it using the reserved keyword delegate.
  2. Second, instantiate it.
  3. Third, write the implementation with the same return value and signature of your delegate.
Fig 1. Steps to use a delegate.

A delegate is similar to an interface. It specifies a contract between a caller and an implementer.

The following code shows how to define, create and call delegates, It creates an array of delegates with instances of delegates that refers to the methods that represent each arithmetic operation.
We execute each delegate with a foreach keyword that iterates through this array.

Fig 2. Sample using delegates.

Using delegates is a solution much simpler than using function pointer.

Fig 3. Testing the program.

Fig 4. Another test.

Download source code

Fetching JSON Data with Angular $http.get() function.

Angular has built-in support for communication with remote HTTP servers and includes some low-level methods of fetching and posting the data. Angular comes with the $http service which includes a few methods we can utilize with all verbs of the REST protocol.

We’ll look at a example using the .$http.get() request. The $http.get() method accepts two parameters: URL and config object.

The first parameter URL is always required and the config is optional, the shortcut $http.get() method initiates a GET request to the server to retrieve data from the server.
This example has the following files:

  • books.js: it contains the data in JSON format.
  • app.js: it contains the functional logic for the example
  • getexample.html: contains the front for the example
Fig.1. The source code for the JSON file

Fig 2. The source code for the app.js

In the previous example the controller defines a dependency to the $scope and the $http module. An HTTP GET request to the data “books.json” endpoint is carried out with the get method. It returns a $promise object with a success and error method.

Fig 3. The code for the web page

Fig 4. Running the example

If you open the web page up in your browser, you’ll see a standard HTML button created, when you press the button the $http service makes an ajax call and set response to the scope’s property books. Thus books can be used to draw a list in the HTML page.

Download the project for Visual Studio

Regular Expressions en PL/SQL Oracle, parte II

En este post anterior mostré ejemplos de búsqueda con las funciones regexp_like y regexp_instr.

A continuación mostrare ejemplos de las funciones regexp_substr y regexp_replace respectivamente.

Como primer ejemplo de la función regexp_substr, obtendré dos subcadenas (substring), una de la columna MEMBERSHIP_NAME donde el carácter a se repita dos veces en cada registro y otra de la columna MEMBERSHIP_DUE en donde la cantidad comience con un dígito del 1 al 6 y después uno o más dígitos que se repitan.

Como segundo ejemplo de la función regexp_substr obtendré un substring de la columna MEMBERSHIP_DATE cuyos registros terminen con los dígitos del 1 al 6 repetidos una o dos veces.

Como primer ejemplo de la función regexp_replace buscaré dentro de la concatenación de las columnas MEMBERSHIP_NAME y MEMBERSHIP_LASTNAME los registros que tengan un carácter o repetido a partir de la posición 4 y lo sustituiré por la cadena (**found**).

Como último ejemplo ejecutamos la función regexp_replace en un texto y reemplazamos la palabra ‘fox’ por la palabra ‘SUPER CAT’ a partir de la posición 1.

Descarga el código PL/SQL

Regular Expressions en PL/SQL Oracle, parte I

Una expresión regular (regular expression) es un conjunto de caracteres (signos) conocido como patrón que al buscarse coincide una o más veces en una cantidad considerable de texto, estos patrones se construyen con una notación de caracteres ordinarios y meta caracteres, los cuales tienen un significado especial dentro de la expresión regular e indican las reglas a las que deben someterse los caracteres ordinarios para su interpretación estos bloques básicos de construcción son similares a una expresión algebraica o a un mini lenguaje de programación.

A continuación algunos de los meta caracteres y su significado:

  • ^ coincide el patrón de búsqueda al inicio de una línea.
  • $ coincide el patrón de búsqueda al final de una línea.
  • . coincide cualquier carácter en cualquier lugar.
  • [] especifica un rango de caracteres
  • ? ubica un carácter opcional.
  • + ubica uno o más caracteres.
  • ubica cero o más caracteres.
  • {n} ubica un carácter que aparece n veces.
  • {n,} ubica un carácter que aparece n o más veces.
  • {n,m}ubica un carácter que aparece de n a m veces.
  • | disyunción o sea un or lógico entre caracteres.

Las expresiones regulares son ampliamente utilizadas en Linux o en otros lenguajes Open Source, además de plataformas como Java y.NET y en bases de datos como PostgreSQL y Oracle.
En Oracle las expresiones regulares son utilizadas cada vez que necesites operaciones de búsqueda demasiado complicadas en donde los comandos SELECT y LIKE no sean suficientes.
Oracle tiene las siguientes cuatro funciones para su utilización:

  • REGEXP_LIKE: es la versión de expresiones regulares del comando LIKE. Una función booleana que regresa TRUE,FALSE o NULL si en el texto existe una coincidencia con la expresión regular.
  • REGEXP_INSTR: esta función regresa la posición del caracter en el texto donde se encontró una coincidencia con la expresión regular.
  • REGEXP_SUBSTR: extrae una coincidencia de texto encontrada con la expresión regular.
  • REGEXP_REPLACE: ejecuta una operación de búsqueda y reemplazo si se encuentra una coincidencia en el texto.

Como ejemplo de su uso, creamos la siguiente tabla:

Después insertamos los siguientes registros para comenzar a utilizar las funciones.

Elizabeth  Bishop 36736-36738 976.063 02/08/1911
Charles Dickens 36734-5461 2244.789 07/02/1812
Jack London 5462-37314 898.127 12/01/1876
Joseph Conrad 37315-5463 1193.493 03/12/1857
Gustave Flaubert 37313-37316 1435.384 12/12/1821
John Milton 37317-37296 1348.582 09/12/1608
Samuel Taylor 37292-37318 207.449 21/10/1772
Virginia Wolf 37061-106 2077.947 25/01/1882
Walter  Scott 37319-37320 412.72 15/08/1771
Robert Louis  Stevenson 37945-37946 1033.54 13/11/1850
Joseph Rudyard  Kipling 37947-12556 382.41 30/12/1865
Arthur Conan Doyle 12557-10964 1844.945 22/05/1859
George  Orwell 54722-3236 2139.874 25/01/1903

Como primer ejemplo utilizamos la función REGEXP_LIKE para obtener de la columna MEMBERSHIP_LASTNAME
los regitros que comienzan con la letra D.La consulta es:

Ahora utilizamos la función REGEXP_LIKE para obtener de la columna MEMBERSHIP_DUE
los registros que terminan con el número 3.La consulta es:

Por último, utilizamos la función REGEXP_LIKE para obtener de la columna MEMBERSHIP_LASTNAME
los registros que tengan las letras de la A a la F. La consulta es:

Ahora ejemplos con la función REGEXP_INSTR. En el primer ejemplo
buscamos los registros que en la columna MEMBERSHIP_NAME
tengan de 1 a 2 veces la letra A y cuyo posición de coincidencia del texto sea mayor
a 0.

En este segundo ejemplo con REGEXP_INSTR buscamos todos los registros que en la columna
MEMBERSHIP_NAME comiencen con la letra J o la letra E.

Un último ejemplo con REGEXP_INSTR buscamos todos los registros que en la columna
MEMBERSHIP_DATE terminen en el penúltimo dígito del 0 al 9 y en el último dígito
del 1 al 2.

Download el código fuente PL/SQL

C# Recipe 2: How to calculate the date of the Easter Sunday.

Easter is the celebration of Christ’s resurrection from the dead. It is celebrated on Sunday, and marks the end of Holy Week, the end of Lent, the last day of the Easter Triduum (Holy Thursday, Good Friday and Easter Sunday), and is the beginning of the Easter season of the liturgical year.

As we know from the Gospels, Jesus Christ rose from the dead on the third day following his crucifixion, which would be Sunday.
Since the early Middle Ages, all Christians have used the same method for determining the date of Easter, though they arrive at a different result.

The following code calculates the easter sunday for a given year:

Listing 1. The main program

Listing 2. The Util class

Fig 1. Running the sample, output 1

Fig 2. Running the sample, output 2

Fig 3. Running the sample, output 3

Download source code